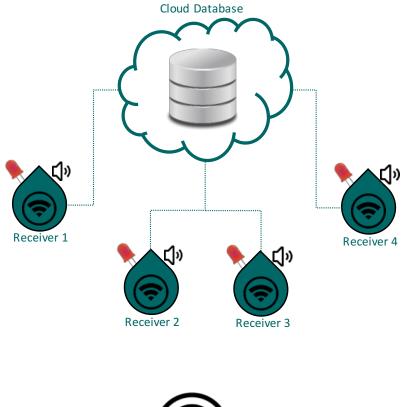


Home Interactive Notification Tracking


11-30-2016

Group B

Maria-Camila Nuñez (EE) Ramon Jimenez (EE) Mannuel Cortes (EE, CS)

About HINT

A system that makes notification tracking easy, fun, and interactive for the user.

About HINT Design Overview

Module Components

Schematics

PCBs

Difficulties

Successes

Wearable

Components

Schematics

PCBs Difficulties

Successes

Development

Budget

Questions?

Demo

About HINT

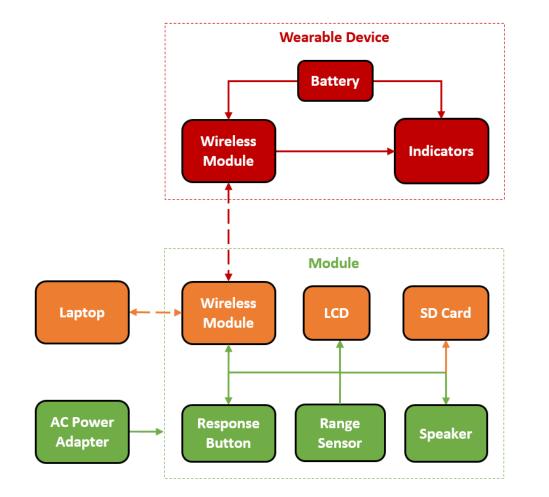
Motivation

- Internet of Things network
- Overall positive impact
 - Facilitates communication
 - Research indicates:
 - Higher self-esteem
 - Sense of responsibility
 - Successful qualities

Goals & Objectives

- HINT will provide best overall experience
 - Affordability
 - User friendly and interactive
 - Notification tracking and task learning
 - No dependency on smartphones
- HINT will enforce tasks
 - Reduce notification bypassing
- HINT will stimulate the human senses
 - Sight
 - Touch
 - Hearing

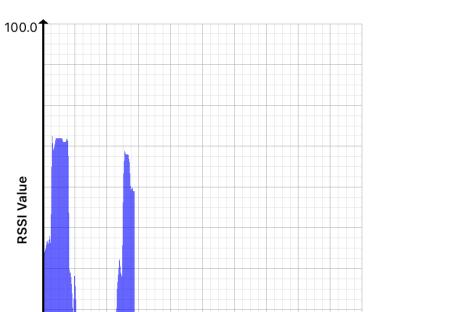
Specifications and Requirements


- Requirements were selected by sponsor and further refined by team
- Design critical requirements displayed in table as shown

Component	Parameter	Requirement	
Wireless Communication Chin	Minimum Range	15 ft.	
Wireless Communication Chip	RSSI Sensitivity Accuracy	+/- 5dB	
Ultrasonic Range Sensor	Minimum Detection Range	20 ft.	
LED Pushbutton	User Interaction Interface	Large & interactive	
Speaker	Auditory Alerts	Tone/voice	
LCD Display	Visual Alerts & Cues	Display tasks to be completed	
Module Circuit Board	Maximum Power Consumption	12 W	
Wearable Device	Maximum Size	40 mm x 15 mm	
Maarahla Dawar Sunnly	Maximum Charge Time	3 hrs.	
Wearable Power Supply	Battery	Rechargeable	
Maarabla Circuit Daard	Maximum Power Consumption	.05 W	
Wearable Circuit Board	Sensory Output Notifications	2 outputs	

Design Overview Module Components **Schematics** PCBs Difficulties Successes Wearable Components **Schematics PCBs** Difficulties Successes **Development Budget Questions?** Demo

About HINT


Design Overview

How HINT Works

- HINT uses a combination of RSSI and range/motion detection to determine the proper conditions to output a notification
- RSSI Received Signal Strength Indicator
- Range/motion detection
 - Measured with ultrasonic range sensor

Time

0.0

Signal Strength Measurement

Work Distribution

About HINT Design Overview Module

Function	Wearable Power	Wearable Software	Range Sensor Integration	Module Software	LCD Integration	Speaker Integration	RSSI	Pushbutton Integration	MCU Routing
Manny Cortes		S		Р	Р	S		S	Р
Maria-Camila Nunez	S		Р		S	Р	S	Р	
Ramon Jimenez	Р	Р	S	S			Ρ		S

Components

Schematics

Components

Schematics

Difficulties

Successes Development

PCBs

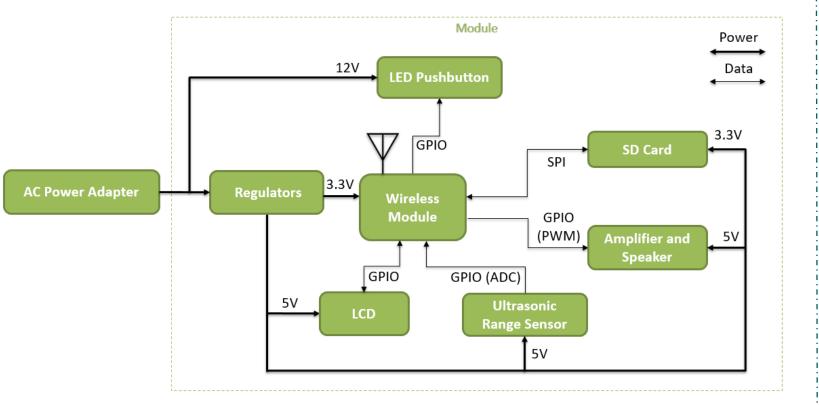
Budget Questions?

Demo

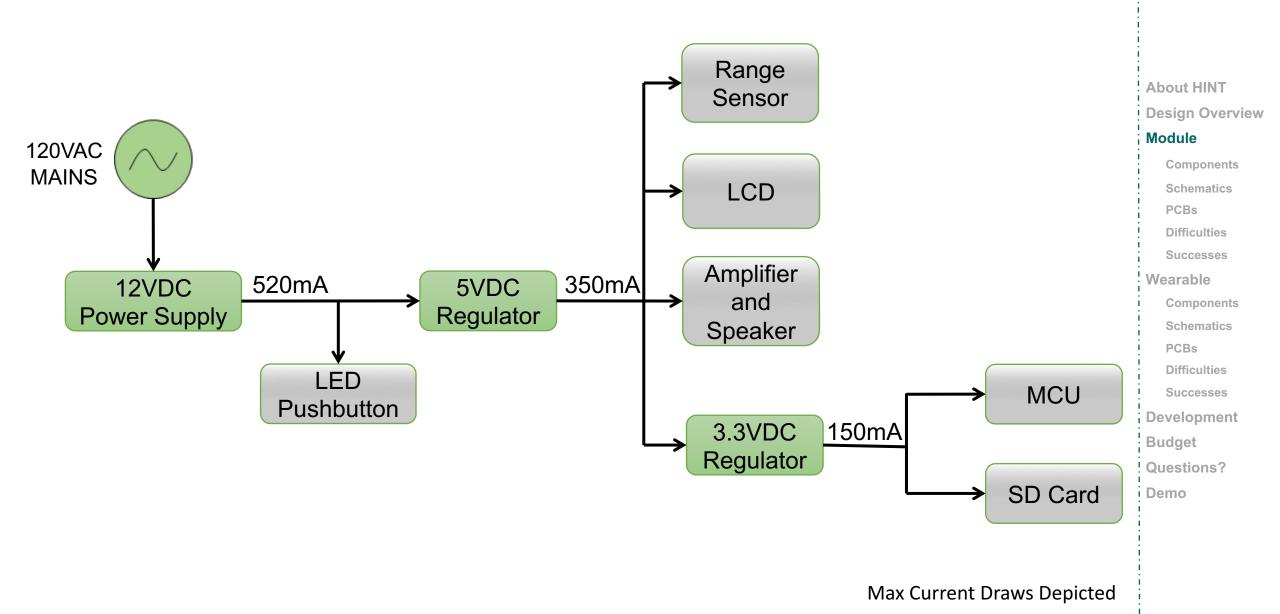
PCBs Difficulties Successes

Wearable

1 - 1

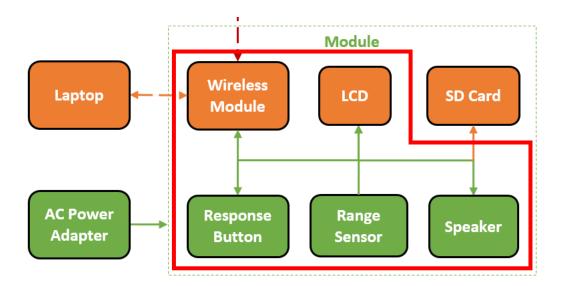

i

1 1


÷ 1 • Primary job

Module

- User detection
- Interactive module
- Wireless communication
 - Bluetooth Low Energy
- Detection methods
 - Motion sensor
 - RSSI
- Signal notifications
 - Enable wearable component functions



Power Distribution

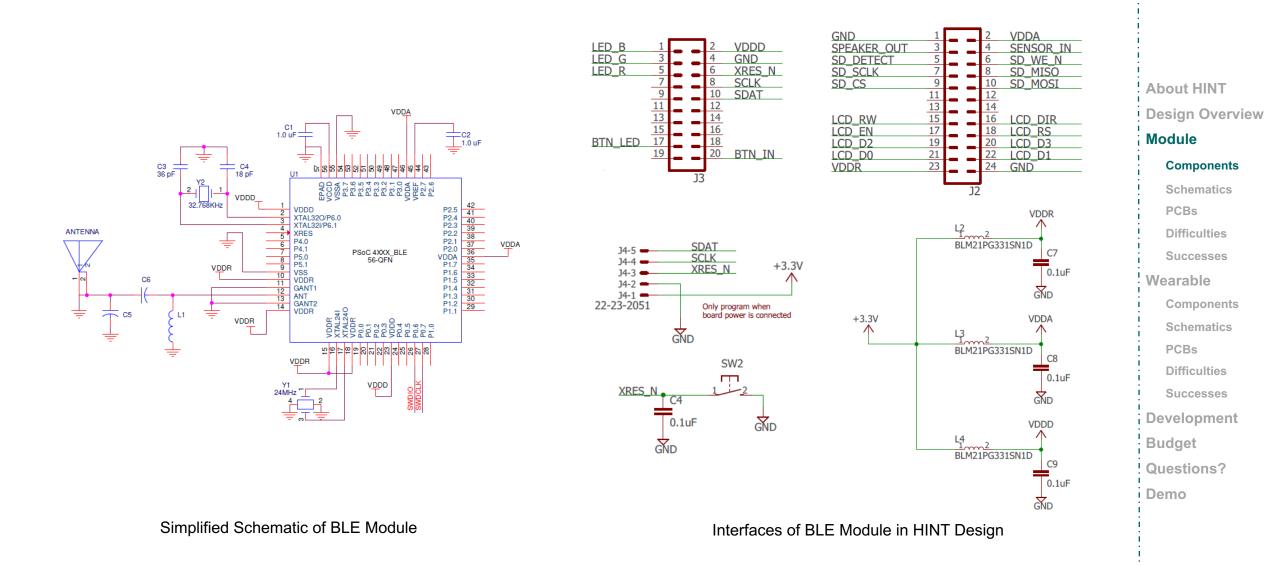

Main Components

- Wireless Module
- Ultrasonic Range Sensor
- LED Pushbutton
- LCD
- Speaker/Amplifier

Wireless Module

- Programmable System on Chip (PSoC) module with integrated trace antenna, oscillator, and Bluetooth Low Energy (BLE) front end
 - Removes the need for RF PCB design
- Uses a 32-bit, 48-MHz ARM Cortex-M0 CPU
- All necessary pins route to headers J1 and J2

- Can be programmed/debugged with the Cypress MiniProg3 USB kit
 - Mates with Molex connector 022-05-3051

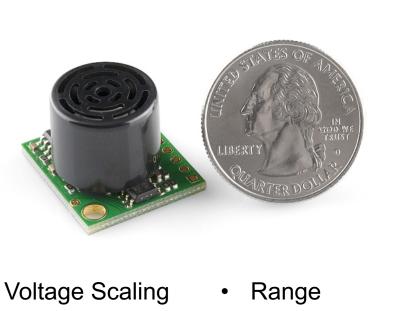


Wireless Module					
Manufacturer	Cypress Semiconductor				
Part Number	CY8KIT-142				
Price	\$9.97				
Dimensions	44.45mm x 25.4mm				
Specs	 128 kB Flash 16 kB SRAM Integrated voltage regulation 2.4 GHz RF Transceiver Programmable digital logic ADC, DAC, and serial communication blocks 36 Programmable GPIO pins w/ pull-up and pull-down resistors Ample development support 				

About HINT Design Overview Module

Components **Schematics PCBs** Difficulties **Successes** Wearable Components **Schematics** PCBs Difficulties **Successes** Development Budget **Questions?** Demo

Wireless Module



6

Ultrasonic Range Sensor

- Concept is to be utilized for range and distance calculation
- Follows requirement of a broad distance detection range
- Analog voltage pin outputs voltage which corresponds to the distance

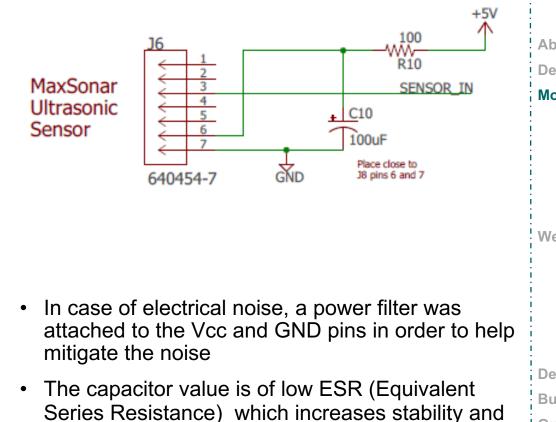
Ultrasonic Range Sensor				
Manufacturer	MaxBotix			
Part Number	LV-MaxSonar – EZ0			
Price	\$26.95			
Dimensions	22.1mm x 19.9mm			
Specs	 •2.5V to 5.5V supply with 2mA typical current draw •Three interface output formats •Operates at 42 KHz 			

MaxBotix LV-MaxSonar – EZ0

 $Vi = \frac{Vcc}{512}$

Vcc = supplied voltage *Vi* = volts per inch

Range $Ri = \frac{Vm}{Vi}$


Vm = measured voltage

Ri = range in inches

Ultrasonic Range Sensor

- High sensitivity and wide beam sensor
- Detects objects from 0-254 inches
- The beam width is not defined because the actual beam width dynamically changes over the course of the range

LV-MaxSonar [®] -EZ beam patterns	EZ0™	EZ1™	EZ2™	EZ3™	EZ4™
Detection pattern to a 1/8 inch diameter dowel.	\bigcirc	₽		*	Ö
Detection pattern to a 1/4 inch diameter dowel.	(\bigcirc		⇔	¢
Detection pattern to a 1 inch diameter dowel.					Q
Detection pattern to a 3 1/4 inch diameter dowel. -5V • 3.3V V+ supply voltage, (Distances overlaid on a 1 foot grid.)					$\mathbf{\hat{V}}$

load life

LED Pushbutton

- Follows HINT's purpose
- Concept is to turn on in conjunction with notification on LCD display
- Follows visibility requirement, it is 4 inches in diameter
- Reliable and can be easily replaced
- Can be easily "connectorized" and routed to a header

	Big Dome Pushbutton
Manufacturer	Sparkfun
Part Number	COM-0918
Price	\$10.00
Dimensions	4 inches in diameter
Specs	 Reliable for 10 million cycles 12V device with internal 460Ω current limiting resistor 5 terminal device with independent LED and switch circuit

Sparkfun Big Dome Pushbutton

· Speaker enforces that notifications will not be ignored

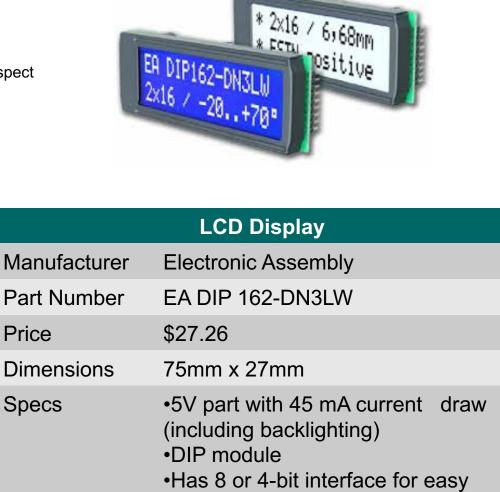
Synchronizes with all system notifications

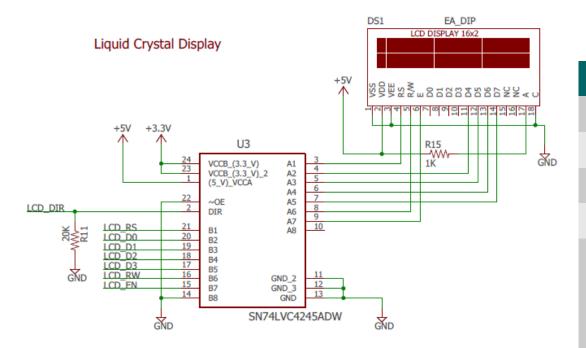
Audio Circuitry

- 8Ω, 0.5W Speaker •
- Interfaced through a low-voltage audio amplifier ٠ to improve audio quality

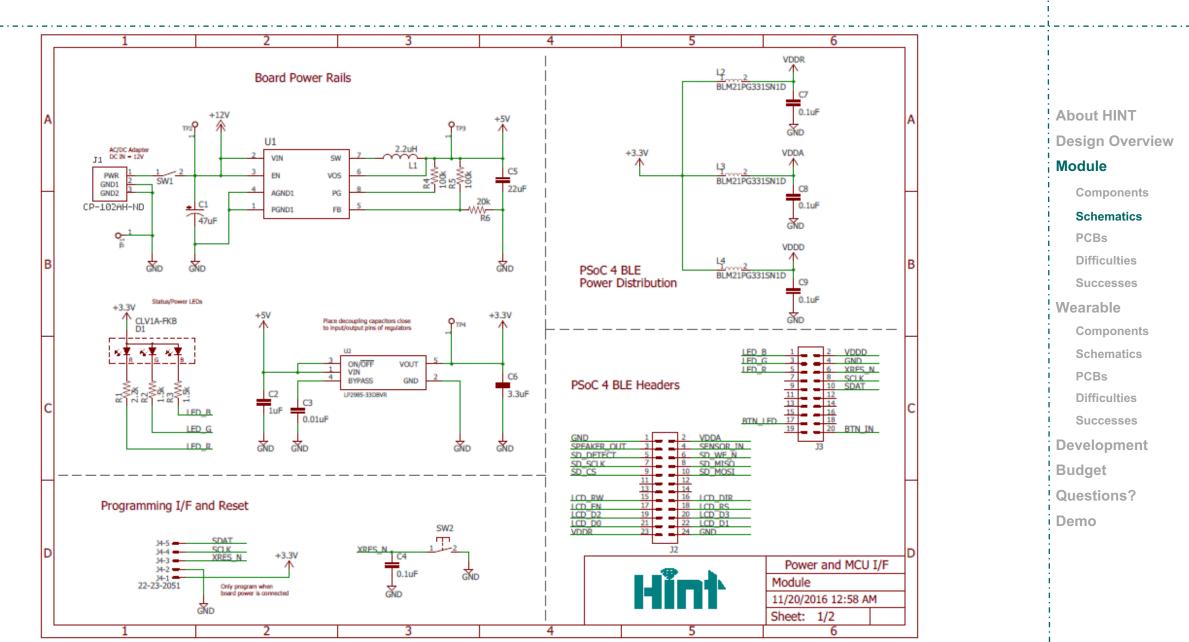
General Purpose Speaker

SPEAKER_OUT	$\frac{1}{10000000000000000000000000000000000$	About HINT Design Overvie Module Components Schematics PCBs Difficulties Successes Wearable Components
	Audio Amplifier	Schematics PCBs
Manufacturer	Texas Instruments	Difficulties
Part Number	LM386	Successes
Price	\$1.21	Development Budget
Dimensions	10mm x 6.35mm	Questions?
Specs	 •5V part with current draw of 8mA •Applies gain for stronger audio output •Comes in a DIP-8 package 	Demo

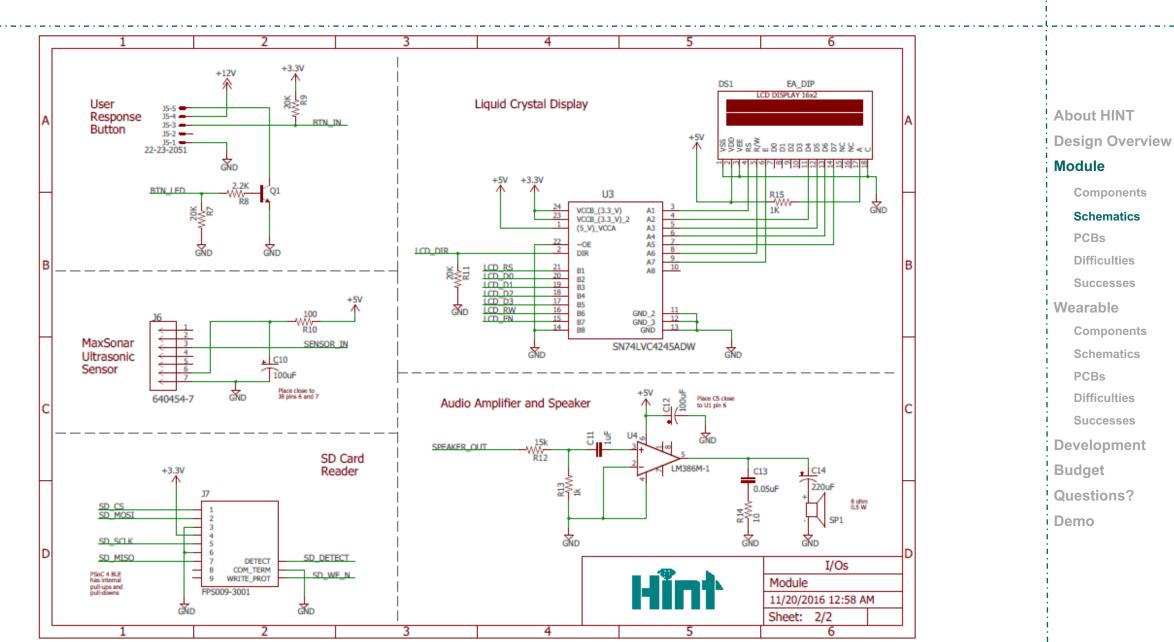



out HINT sign Overview dule Components **Schematics** PCBs Difficulties **Successes** arable Components **Schematics PCBs** Difficulties **Successes**

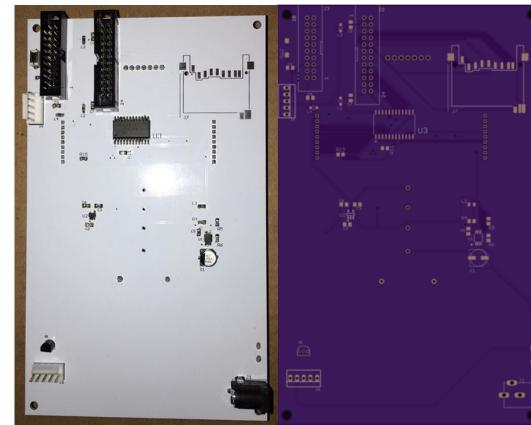
LCD


- The LCD is the only digital output to supplement the sensory I/O
- Gives the specific instructions on the scheduled task
- 2x16 characters suffices for short task descriptions
 - The simple display doesn't distract or take away from the sensory aspect of the project

Electronic Assembly DIP162

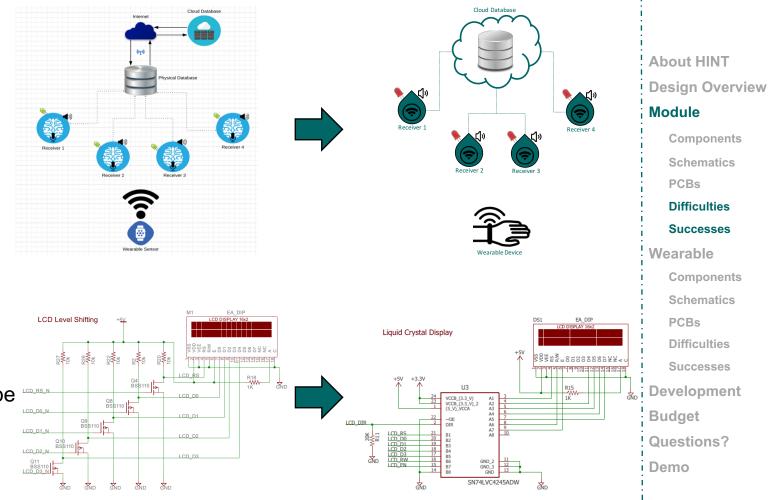


Schematics


Schematics

Module PCB

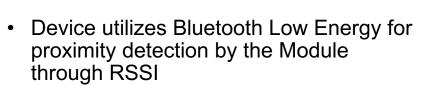
Top Layer

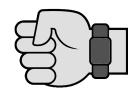


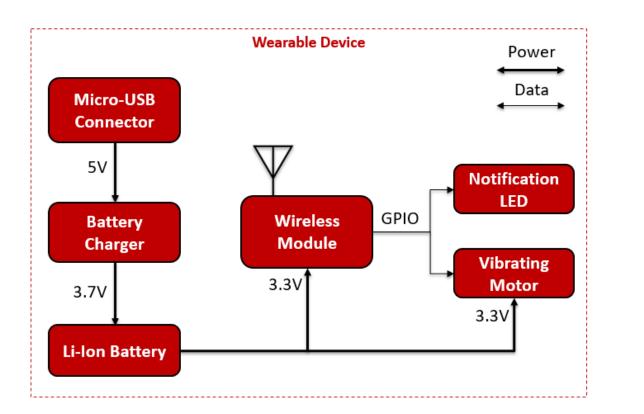
Bottom Layer

Difficulties and Successes

Difficulties:

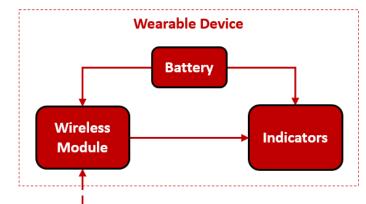

- 1. Communication topology change
- 2. Change of original audio output design
- 3. Logic levels didn't match
- 4. LED pushbutton has 5 terminals


Successes:


- 1. Made module central role
- 2. Designed hardware for outputting audio
- 3. Designed level shifting circuitry during prototype
- 4. Tested hardware and determined operating flexibility

Wearable

- Emits notifications when alerted by module
- Designed to be an accessory worn on the wrist


About HINT Design Overview Module Components Schematics PCBs Difficulties Successes Wearable Components Schematics PCBs Difficulties Successes

Development Budget Questions?

Demo

Main Components

- Wireless Module (PRoC)
- Battery and PMIC
- Notification LED and vibrating motor

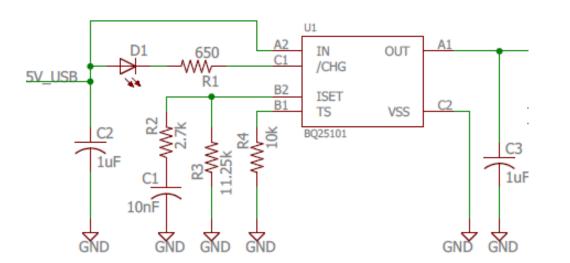
About HINT Design Overview Module Components **Schematics** PCBs Difficulties Successes Wearable Components Schematics PCBs Difficulties Successes Development Budget **Questions?**

Demo

Battery Charge Management IC

- Charges battery at specified programmed current to maximize efficiency
- Prevents damage being done to the cells during charge cycles
- High input voltage range for low cost unregulated adapters
- Programmable termination and pre-charge current
- Various protection features:
 - OVP
 - UVLO
 - TSD
 - SCP

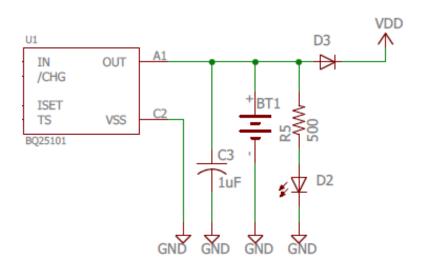
Texas Instruments - BQ25101



Battery PMIC				
Manufacturer	Texas Instruments			
Part Number	BQ25101			
Price	\$0.84			
Dimensions	1.60mm x 0.90 mm			
Specs	 10mA to 250mA charge current (programmable) Input Voltage 3.5V to 28V Constant 4.25V to 4.37V output voltage 			

Battery Charge Management IC

- Charge Current I_{SET}:
 - $R_{ISET} = \frac{K_{ISET}}{I_{OUT}}$; $I_{SET} = 12mA$
- Pre-charge / Termination Current Threshold
 - $R_{Term} = \% Term \times K_{Term}$; 10%
 - $R_{Term} = \% Prechg \times K_{Prechg}$; 20%
- Temperature Sense
 - Bypassed with $10k\Omega$ resistor


BQ25101 Circuit

- *R_{ISET}* = Charge Current Resistance
- R_{Term}= Termination Current Resistance
- *K* = Gain Factor for IC Charge, Termination, and Pre-charge Current
- %Term = Percent of Fast Charge Current Where Termination Occurs
- %Prechg = Percent of Fast Charge Current That is Desired During Pre-charge

- Supplies power to wearable BT module and notification peripherals
- Battery life expectation .5 1000+ hours
- Small size makes integration with restricted size requirements capable

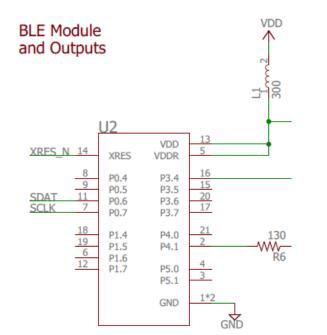
PowerStream – GM300910

Battery				
Manufacturer	PowerStream			
Part Number	GM300910			
Price	\$15			
Dimensions	3mm x 9mm x 10mm			
Specs	 Charge Current: 12mA – 24mA Capacity: 15mAh Weight: 2.25g Discharge Cutoff Voltage: 2.75V 			

About HINT Design Overview Module Components Schematics PCBs Difficulties Successes Wearable Components Schematics PCBs Difficulties

Successes

Development


Questions?

Budget

Demo

Bluetooth Module

- Communicate RSSI value with module for proximity detection
- Bluetooth 4.1 single-mode module
- Very low current draw
- Includes BLE stack
- On-board ceramic antenna
- Voltage is internally regulated
- Smallest form factor found with antenna

Cypress – CYBLE-022001-00

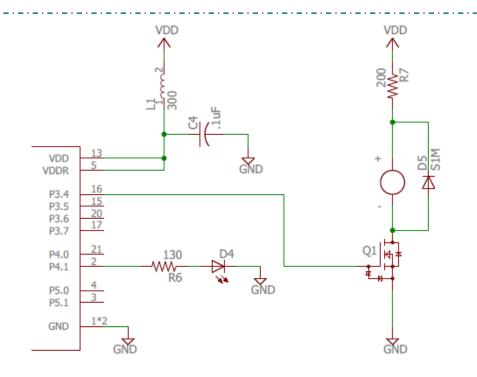
	BT Module
Manufacturer	Cypress
Part Number	Cyble-022001-00
Price	\$7.57
Dimensions	10mm x 10mm
Specs	 •32-bit processor •128-KB flash memory •16-KB SRAM memory •16 GPIOs •SWD programming •Input Voltage: 1.8V – 5.5V

About HINT Design Overview Module Components Schematics PCBs Difficulties Successes Wearable Components

Schematics

Successes Development

PCBs Difficulties


Budget

Demo

Questions?

Sensory Outputs

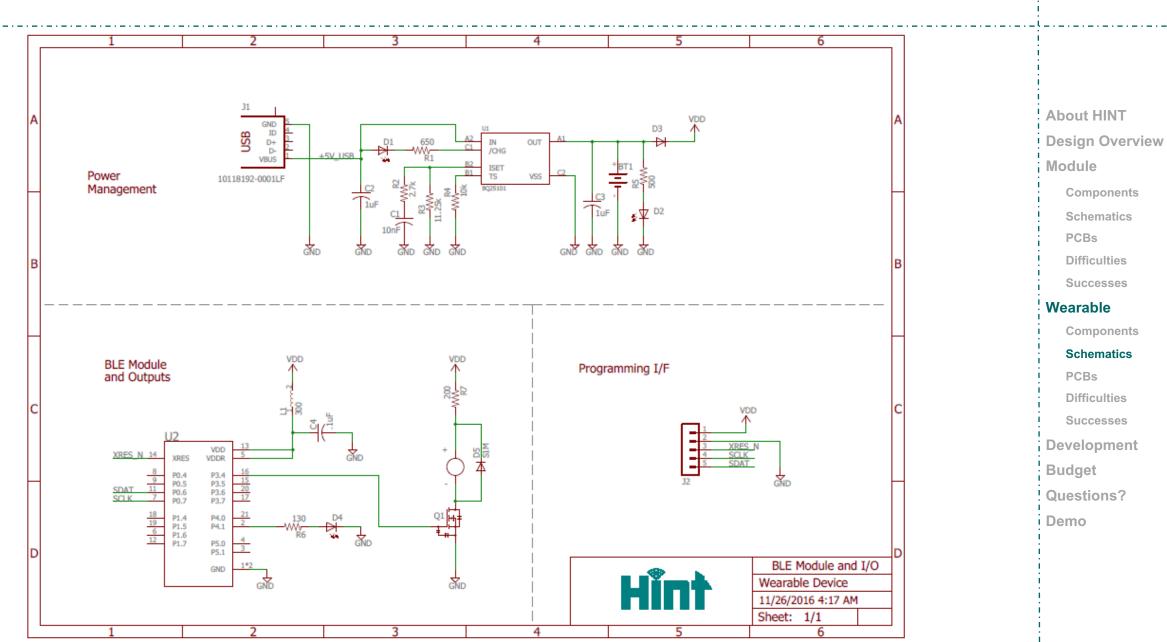
- Reinforce notification outputs on module
- Parts
 - Vibrating Motor Disc
 - Voltage: 2 V to 5 V
 - 3 V current draw: 60 mA
 - SMD LED
 - Voltage: 2.1 V to 2.5 V
 - Yellow color

Vibrating Motor Disc

About HINT Design Overview Module Components Schematics PCBs Difficulties Successes Wearable Components Schematics PCBs Difficulties

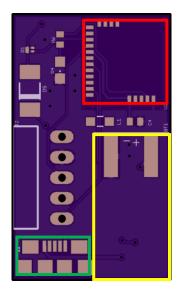

Successes Development

Budget


Demo

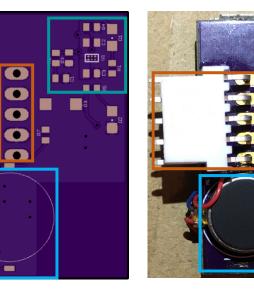
Questions?

SMD LED



Schematics

Wearable PCB


- Ordered through OSHPark.com
- Assembled by hand & by Quality Manufacturing Services
- 1.30" x 0.80"

- BLE Module
- Battery
- Micro-USB
- Vibrating Motor
- Batt. Charge
 Network
- Programming
 Connector

Demo

About HINT

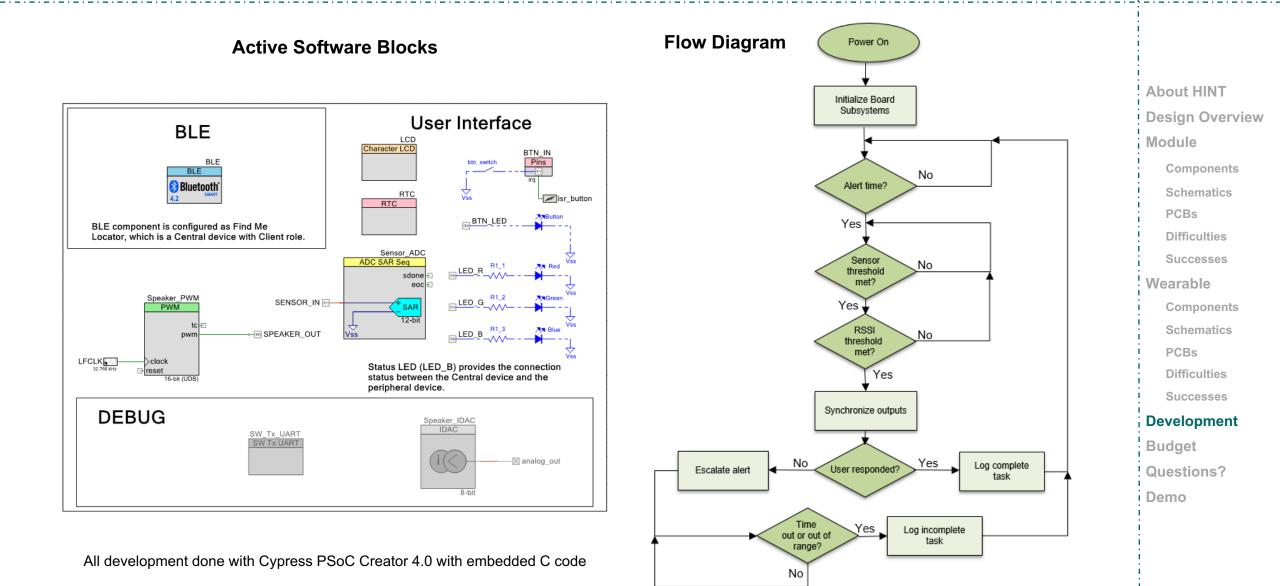
Difficulties and Successes

Difficulties:

- 1. Assembly
 - a. Difficult to solder by hand
 - b. MOSFET proved to be difficult
 - c. Charge management IC (BGA)
 - d. Time consuming
 - e. QMS provided 1-of-2 functional PCBs
- 2. Software
 - a. Programming wearable to interface with the Module
 - b. RSSI integration proved to be complicated due to Cypress bug

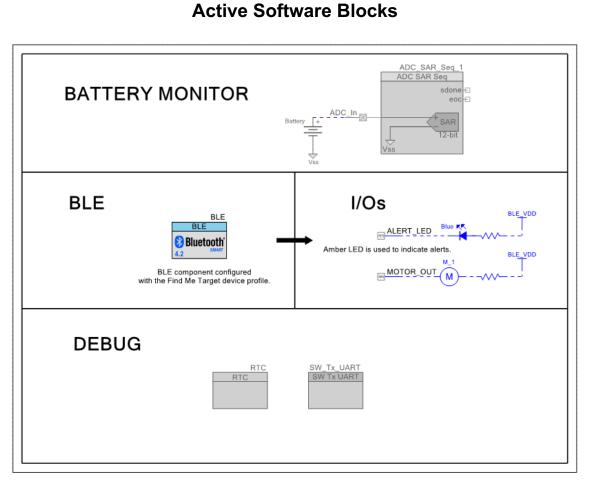
Successes:

- 1. Assembling PCB by hand (except key components)
- 2. Functional PCB includes all features
- 3. RSSI integration

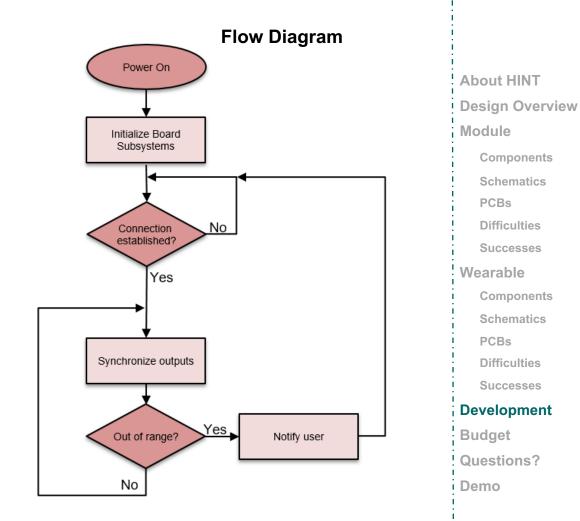

About HINT Design Overview Module Components Schematics PCBs Difficulties Successes Wearable Components Schematics PCBs

Difficulties Successes Development Budget

Questions?

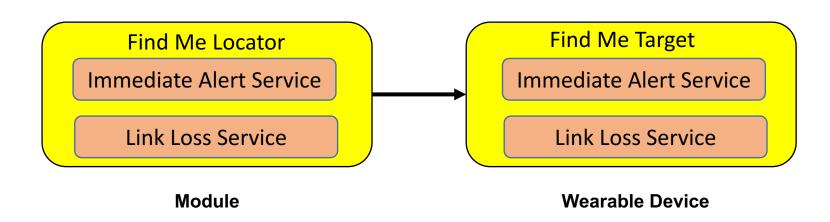

Demo

Module Software



6

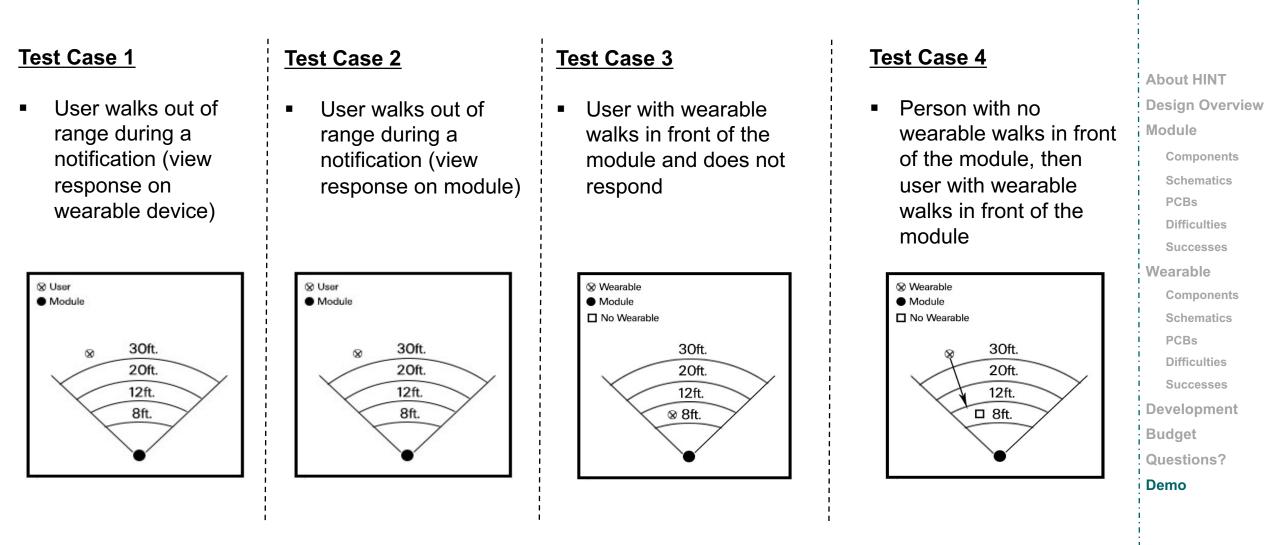
Wearable Software



All development done with Cypress PSoC Creator 4.0 with embedded C code

Bluetooth Profile

- Find Me Profile
 - Defines behavior between devices based on alert levels
 - Dependency on General Attribute Profile (GATT)
- Find Me Locator (Central device)
 - Module (GATT Client) looks for 'target'
- Find Me Target (Peripheral device)
 - Wearable (GATT Server) emits alert depending on Client instructions
- Immediate Alert Service alerts trigger immediately
- Link Loss Service alerts trigger on BLE connection loss


Budget

Subsystems	Parts and Materials	Projected Qty	Price/Unit	Projected Cost	Current Cost
	Module Microcontroller	2	\$10	\$20	\$17
	BLE Development Kit	1	\$49	\$49	\$0
	Module LCD Display	2	\$27	\$54	\$66
	Response Button	2	\$10	\$20	\$28
Module	Range Sensor	1	\$27	\$27	\$74
	Speaker	4	\$1	\$3	\$4
	Printed Circuit Board	5	\$150	\$750	\$118
	AC Adapter	2	\$6	\$12	\$16
	Enclosure	N/A	\$50	\$50	\$0
	Wearable Microcontroller	3	\$12	\$36	\$36
	BLE Development Kit	1	\$20	\$20	\$0
	Vibration	2	\$4	\$8	\$8
Wearable	Printed Circuit Board	3	\$100	\$300	\$124
	Battery	2	\$15	\$30	\$33
	Power Management IC	2	\$2	\$4	\$4
	Enclosure	N/A	\$30	\$30	\$0
Both	Programmer/Debugger	1	\$89	\$89	\$100
	Board Components	N/A	\$247	\$247	\$247
	Other PCB Expenditures	N/A	\$136	\$136	\$0
Totals		Total Cost:		\$1,413	\$874
		Sponsorship:		\$1,000	

Questions?

Demo Test

Test Cases 5-7: Normal operation with user responses